
Parametric model checking timed automata
under non-Zenoness assumption?

Étienne André1, Hoang Gia Nguyen1, Laure Petrucci1, and Jun Sun2

1 LIPN, CNRS UMR 7030, Université Paris 13, Sorbonne Paris Cité
2 ISTD, Singapore University of Technology and Design, Singapore

Abstract. Real-time systems often involve hard timing constraints and
concurrency, and are notoriously hard to design or verify. Given a model
of a real-time system and a property, parametric model-checking aims at
synthesizing timing valuations such that the model satisfies the property.
However, the counter-example returned by such a procedure may be
Zeno (an infinite number of discrete actions occurring in a finite time),
which is unrealistic. We show here that synthesizing parameter valuations
such that at least one counterexample run is non-Zeno is undecidable for
parametric timed automata (PTAs). Still, we propose a semi-algorithm
based on a transformation of PTAs into Clock Upper Bound PTAs to
derive all valuations whenever it terminates, and some of them otherwise.

1 Introduction

Timed automata (TAs) [1] are a popular formalism for real-time systems model-
ing and verification, providing explicit manipulation of clock variables. Real-time
behavior is captured by clock constraints on system transitions, setting or reset-
ting clocks, etc. TAs have been studied in various settings (such as planning [19])
and benefit from powerful tools such as Uppaal [21] or PAT [24].

Model checking TAs consists of checking whether there exists an accepting
cycle (i. e. a cycle that visits infinitely often a given set of locations) in the
automaton made of the product of the TA modeling the system with the TA
representing a violation of the desired property (often the negation of a property
expressed, e. g. in CTL). However, such an accepting cycle does not necessarily
mean that the property is violated: indeed, a known problem of TAs is that
they allow Zeno behaviors. An infinite run is non-Zeno if it takes an unbounded
amount of time; otherwise it is Zeno. Zeno runs are infeasible in reality and
thus must be pruned during system verification. That is, it is necessary to check
whether a run is Zeno or not so as to avoid presenting Zeno runs as counterexam-
ples. The problem of checking whether a timed automaton accepts at least one
non-Zeno run, i. e. the emptiness checking problem, has been tackled previously
(e. g. [25,26,11,15,16,27]).

? This work is partially supported by the ANR national research program PACS
(ANR-14-CE28-0002).

1

It is often desirable not to fix a priori all timing constants in a TA: either
for tuning purposes, or to evaluate robustness when clock values are imprecise.
For that purpose, parametric timed automata (PTAs) extend TAs with parame-
ters [2]. Although most problems of interest are undecidable for PTAs [3], some
(semi-)algorithms were proposed to tackle practical parameter synthesis (e. g.
[4,20,18,9]). We address here the synthesis of parameter valuations for which
there exists a non-Zeno cycle in a PTA; this is highly desirable when perform-
ing parametric model-checking for which the parameter valuations violating the
property should not allow only Zeno-runs. As far as the authors know, this is
the first work on parametric model checking of timed automata with the non-
Zenoness assumption. Just as for TAs, the parametric zone graph of PTAs (used
in e. g. [17,4,18]) cannot be used to check whether a cycle is non-Zeno. Therefore,
we propose here a technique based on clock upper bound PTAs (CUB-PTAs), a
subclass of PTAs satisfying some syntactic restriction, and originating in CUB-
TAs for which the non-Zeno checking problem is most efficient [27]. In contrast
to regular PTAs, we show that synthesizing valuations for CUB-PTAs such that
there exists an infinite non-Zeno cycle can be done based on (a light extension
of) the parametric zone graph. We make the following technical contributions:

1. We show that the parameter synthesis problem for PTAs with non-Zenoness
assumption is undecidable.

2. We show that any PTA can be transformed into a finite list of CUB-PTAs;
3. We develop a semi-algorithm to solve the non-Zeno synthesis problem using

CUB-PTAs, implemented in IMITATOR and validated using benchmarks.

Outline Section 2 recalls the necessary preliminaries. Section 3 shows the unde-
cidability of non-Zeno-Büchi emptiness. We then present the concept of CUB-
PTAs (Section 4), and show how to transform a PTA into a list of CUB-PTAs.
Zeno-free parametric model-checking of CUB-PTA is addressed in Section 5,
and experiments reported in Section 6. Finally, Section 7 concludes and gives
perspectives for future work.

2 Preliminaries

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i. e. real-
valued variables that evolve at the same rate. A clock valuation is a function
w : X → R≥0. We write X = 0 for

∧
1≤i≤H xi = 0. Given d ∈ R≥0, w+d denotes

the valuation such that (w + d)(x) = w(x) + d, for all x ∈ X.
We assume a set P = {p1, . . . , pM} of parameters, i. e. unknown constants. A

parameter valuation v is a function v : P → Q≥0. A strictly positive parameter
valuation is a valuation v : P → Q>0.

In the following, we assume C ∈ {<,≤} and ./ ∈ {<,≤,≥, >}. Throughout
this paper, lt denotes a linear term over X ∪ P of the form

∑
1≤i≤H αixi +∑

1≤j≤M βjpj + d, with αi, βj , d ∈ N. Similarly, plt denotes a parametric linear
term over P , that is a linear term without clocks (αi = 0 for all i). A constraint C
(i. e. a convex polyhedron) over X ∪P is a set of inequalities of the form lt ./ lt ′,

2

with lt , lt ′ two linear terms. We denote by true (resp. false) the constraint that
corresponds to the set of all possible (resp. the empty set of) valuations. Given a
parameter valuation v, v(C) denotes the constraint over X obtained by replacing
each parameter p in C with v(p). Likewise, given a clock valuation w, w(v(C))
denotes the expression obtained by replacing each clock x in v(C) with w(x).
We say that v satisfies C, denoted by v |= C, if the set of clock valuations
satisfying v(C) is non-empty. We say that C is satisfiable if ∃w, v s.t. w(v(C))
evaluates to true. We define the time elapsing of C, denoted by C↗, as the
constraint over X and P obtained from C by delaying all clocks by an arbitrary
amount of time. Given R ⊆ X, we define the reset of C, denoted by [C]R, as the
constraint obtained from C by resetting the clocks in R, and keeping the other
clocks unchanged. We denote by C↓P the projection of C onto P , i. e. obtained
by eliminating the clock variables using existential quantification.

A guard g is a constraint over X ∪ P defined by inequalities of the form
x ./ plt . We assume w.l.o.g. that, in each guard, given a clock x, at most one
inequality is in the form xCplt , that is a clock has a single upper bound (or none).
A non-parametric guard is a guard over X, i. e. with inequalities x ./ z, with
z ∈ N. A parametric zone C is a constraint over X ∪ P defined by inequalities
of the form xi − xj ./ plt . A parametric constraint K is a constraint over P
defined by inequalities of the form plt ./ plt ′, with plt , plt ′ two parametric linear
terms. We use the notation v |= K to indicate that valuating parameters p with
v(p) in K evaluates to true. We denote by > (resp. ⊥) the parametric constraint
that corresponds to the set of all possible (resp. the empty set of) parameter
valuations. Given two parametric constraints K1 and K2, we write K1 ⊆ K2

whenever for all v, v |= K1 ⇒ v |= K2.

Definition 1. A PTA A is a tuple A = (Σ,L, l0, X, P,K0, I, E), where: i) Σ is
a finite set of actions, ii) L is a finite set of locations, iii) l0 ∈ L is the initial
location, iv) X is a set of clocks, v) P is a set of parameters, vi) K0 is the initial
parameter constraint, vii) I is the invariant, assigning to every l ∈ L a guard
I(l), viii) E is a set of edges e = (l, g, a,R, l′) where l, l′ ∈ L are the source and
target locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a guard.

The initial constraint K0 is used to constrain some parameters (as in, e. g.
[17,4]); in other words, it defines a domain of valuation for the parameters. For
example, given two parameters pmin and pmax, we may want to ensure that
pmin ≤ pmax. Given A = (Σ,L, l0, X, P,K0, I, E), we write A.K0 as a shortcut
for the initial constraint of A. In addition, given K ′0, we denote by A(K ′0) the
PTA where A.K0 is replaced with K ′0.

Observe that, as in [27], we do not define accepting locations. In our work, we
are simply interested in computing valuations for which there is a non-Zeno cycle.
A more realistic parametric model checking approach would require additionally
that the cycle is accepting, i. e. it contains at least one accepting location. How-
ever, this has no specific theoretical interest, and would impact the readability
of our exposé.

Given a parameter valuation v |= A.K0, we denote by v(A) the non-parametric
TA where all occurrences of a parameter pi have been replaced by v(pi).

3

Definition 2 (Concrete semantics of a TA). Given a PTA A =
(Σ,L, l0, X, P,K0, I, E), and a parameter valuation v, the concrete semantics
of v(A) is given by the timed transition system (S, s0,→), with S = {(l, w) ∈
L × RH

≥0 | w(v(I(l))) is true}, s0 = (l0,0), and → consists of the discrete and
(continuous) delay transition relations:

– discrete transitions: (l, w)
e→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists e =

(l, g, a,R, l′) ∈ E, w′ = [w]R, and w(v(g)) is true.

– delay trans.: (l, w)
d→ (l, w+ d), with d ∈ R≥0, if ∀d′ ∈ [0, d], (l, w+ d′) ∈ S.

A (concrete) run is a sequence r = s0α0s1α1 · · · snαn · · · s.t. ∀i, (si, αi, si+1) ∈
→. We consider as usual that concrete runs strictly alternate delays di and dis-

crete transitions ei and we thus write concrete runs in the form r = s0
(d0,e0)→

s1
(d1,e1)→ · · · . We refer to a state of a run starting from the initial state of a

TA A as a concrete state of A. Note that when a run is finite, it must end with
a concrete state. Given a concrete state s = (l, w), we say that s is reachable (or
that v(A) reaches s) if s belongs to a run of v(A). By extension, we say that l
is reachable in v(A), if there exists a concrete state (l, w) that is reachable.

An infinite run is said to be Zeno if it contains an infinite number of discrete
transitions within a finite delay, i. e. if the sum of all delays di is bounded.

Symbolic semantics Let us recall the symbolic semantics of PTAs (as in
e. g. [4,18]). A symbolic state is a pair s = (l, C) where l ∈ L is a location,
and C its associated parametric zone. The initial symbolic state of A is s0 =(
l0, ({0} ∧ I(l0))↗ ∧ I(l0) ∧ K0

)
. That is, the initial state corresponds to all

clocks equal to 0 followed by time-elapsing, intersected with the initial invariant
and the initial parameter constraint. The symbolic semantics relies on the Succ
operation. Given a symbolic state s = (l, C) and an edge e = (l, g, a,R, l′),

Succ(s, e) = (l′, C ′), with C ′ =
(
[(C ∧ g)]R

)↗
. The Succ operation is effectively

computable, using polyhedra operations: note that the successor of a parametric
zone C is a parametric zone. A symbolic run of a PTA is an alternating sequence
of symbolic states and edges starting from the initial symbolic state, of the

form s0
e0⇒ s1

e1⇒ · · · em−1⇒ sm, such that for all i = 0, . . . ,m − 1, we have
ei ∈ E, and si+1 = Succ(si, ei). The symbolic semantics is often given in the
form of a parametric zone graph, i. e. symbolic states of A and transitions (s, e, s′)

whenever s′ = Succ(s, e). Given a symbolic run (l0, C0)
e0⇒ (l1, C1)

e1⇒ · · · en−1⇒
(ln, Cn) · · · , its untimed support is the sequence l0e0l1 · · · en−1ln · · · . Two runs
(symbolic or concrete) are equivalent if they have the same untimed support.

Let us recall a lemma relating concrete and symbolic runs.

Lemma 1. Let A be a PTA, and let r be a symbolic run of A reaching (l, C).
Let v |= A.K0. There exists an equivalent concrete run in v(A) iff v |= C↓P .

Proof. From [17, Propositions 3.17 and 3.18]. �
Given a symbolic run r reaching (l, C), we call the concrete runs associated

with r the concrete runs equivalent to r in v(A), for all v |= C↓P .

4

Problems In this paper, we aim at addressing the following two problems.

non-Zeno emptiness problem:
Input: A PTA A
Problem: Is the set of parameter valuations v for which there exists a non-
Zeno infinite run in v(A) empty?

non-Zeno synthesis problem:
Input: A PTA A
Problem: Synthesize the set of parameter valuations v for which there exists
an infinite non-Zeno run in v(A).

3 Undecidability of the non-Zeno emptiness problem

As reachability is undecidable for PTAs [2], it is unsurprising that the existence
of a valuation for which there exists a non-Zeno infinite run is undecidable too.

Theorem 1. The non-Zeno emptiness problem is undecidable for PTAs.

Proof. By reduction from the halting problem of a deterministic 2-counter-
machine, which is undecidable [22]. We encode a 2-counter machine (2CM) using
PTAs, following an encoding in [8]. This encoding is such that the location lhalt
encoding the halting state of the 2CM is reachable iff the 2CM halts, and for
valuations of the (unique) parameter v such that v(p) is larger than or equal to
the maximum value of the counters along the (unique) run of the machine. Then,
since this encoding is such that for any parameter valuation, the encoding stops
after v(p) discrete steps, the encoding has no infinite run for any valuation.

Then, from the location encoding the halting location (i. e. lhalt), we add a
transition resetting x to a new location lf . This location has a self-loop guarded
with x = 1 and resetting x (where x is any of the four clocks used in the
encoding in [8]). Hence whenever lhalt is reachable, there is an infinite non-Zeno
run looping on lf . That is, there is an infinite non-Zeno run iff the 2CM halts.

�
Since the emptiness problem is undecidable, the synthesis problem becomes

intractable. In the remainder of this paper, we will devise a semi-algorithm to
address non-Zeno synthesis, i. e. an algorithm that computes the exact solution
if it terminates. Otherwise, we compute an under-approximation of the result.

4 CUB-parametric timed automata

It has been shown (e. g. [11,25]) that checking whether a run of TA is infeasible
based on the symbolic semantics alone. In [27], the authors identified a subclass
of TAs called CUB-TAs for which non-Zenoness checking based on the symbolic
semantics is feasible. Furthermore, they show that an arbitrary TA can be trans-
formed into a CUB-TA. Based on their work, we first show that arbitrary PTAs

5

can be transformed into a parametric version of CUB-TAs, and then solve the
non-Zeno synthesis problem based on parametric CUB-TAs.

As defined in [27], a clock upper bound is either ∞ or a pair (n,C) where
n ∈ Q (recall that C is either < or ≤). We write (n1,C1) = (n2,C2) to denote
n1 = n2 and C1 = C2; (n1,C1) ≤ (n2,C2) to denote n1 < n2, or if n1 = n2, then
either C2 is ≤ or both C1 and C2 are <. Further, we write (n,C) > d where d
is a constant to denote n > d. We define min((n,C1), (m,C2)) to be (n,C1) if
(n,C1) ≤ (m,C2), and (m,C2) otherwise. Given a clock x and a non-parametric
guard g, we write ub(g, x) to denote the upper bound of x given g. Formally,

ub(g, x) =

(n,C) if g is xC n
∞ if g is x > n or x ≥ n
∞ if g is x′ ./ n and x′ 6= x
∞ if g is true
min(ub(g1, x), ub(g2, x)) if g is g1 ∧ g2

Definition 3. A TA is a CUB-TA if for each edge (l, g, a,R, l′), for all clocks
x ∈ X, we have i) ub(I(l), x) ≤ ub(g, x), and ii) if x /∈ R, then ub(I(l), x) ≤
ub(I(l′), x).

Intuitively, every clock in a CUB-TA has a non-decreasing upper bound along
any path until it is reset.

4.1 Parametric clock upper bounds

Let us define clock upper bounds in a parametric setting. A parametric clock
upper bound is either ∞ or a pair (plt ,C).

Given a clock x and a guard g, we denote by pub(g, x) the parametric upper
bound of x given g. This upper bound is a parametric linear term. Formally,

pub(g, x) =

(plt ,C) if g is xC plt
∞ if g is x > plt or x ≥ plt
∞ if g is x′ ./ plt and x′ 6= x
∞ if g is true
min(pub(g1, x), pub(g2, x)) if g is g1 ∧ g2

Recall that, in each guard, given a clock x, at most one inequality is in the form
x C plt . In that case, at most one of the two terms is not ∞ and therefore the
minimum is well-defined (with the usual definition that min(plt ,∞) = plt).3

We write (plt1,C1) ≤ (plt2,C2) to denote the constraint{
plt1 < plt2 if C1 = ≤ and C2 = <
plt1 ≤ plt2 otherwise.

3 Note that if a clock has more than a single upper bound in a guard, then the
minimum can be encoded as a disjunction of constraints, and our results would still
apply with non-convex constraints (that can be implemented using a finite list of
convex constraints).

6

That is, we constrain the first parametric clock upper bound to be smaller
than or equal to the second one, depending on the comparison operator.

Given two parametric clock upper bounds pcub1 and pcub2, we write pcub1 ≤
pcub2 to denote the constraint (plt1,C1) ≤ (plt2,C2) if pcub1 = (plt1,C1) and pcub2 = (plt2,C2)

> if pcub2 =∞
⊥ otherwise.

This yields an inequality constraining the first parametric clock upper bound
to be smaller than or equal to the second one.

4.2 CUB parametric timed automata

We extend the definition of CUB-TAs to parameters as follows:

Definition 4. A PTA is a CUB-PTA if for each edge (l, g, a,R, l′), for all clocks
x ∈ X, the following conditions hold: i) A.K0 ⊆

(
pub(I(l), x) ≤ pub(g, x)

)
, and

ii) if x /∈ R, then A.K0 ⊆
(
pub(I(l), x) ≤ pub(I(l′), x)

)
.

Hence, a PTA is a CUB-PTA iff every clock has a non-decreasing upper
bound along any path before it is reset, for all parameter valuations satisfying
the initial constraint A.K0 .

Note that, interestingly enough, the class of hardware circuits modeled using
a bi-bounded inertial delay4 fits into CUB-PTAs (for all parameter valuations).

Example 1. Consider the PTA A in Fig. 1a s.t. A.K0 = >. Then A is not CUB:
for x, the upper bound in l0 is x ≤ 1 whereas that of the guard on the transition
outgoing l0 is x ≤ p. (1,≤) ≤ (p,≤) yields 1 ≤ p. Then, > 6⊆

(
1 ≤ p

)
; for

example, p = 0 does not satisfy 1 ≤ p.
Consider again the PTA A in Fig. 1a, this time assuming that A.K0 = (p =

1 ∧ 1 ≤ p′ ∧ p′ ≤ p′′). This PTA is a CUB-PTA. (The largest constraint K0

making this PTA a CUB will be computed in Example 2.) ut

Lemma 2. Let A be a CUB-PTA. Let v |= A.K0. Then v(A) is a CUB-TA.

Proof. Let v |= A.K0. Let e = (l, g, a,R, l′) be an edge. Given a clock x ∈ X,
from Definition 4, we have that v |=

(
pub(I(l), x) ≤ pub(g, x)

)
, and therefore

v(pub(I(l), x)) ≤ v(pub(g, x)). This matches the first case of Definition 3. The
second case (x /∈ R) is similar. �

4 This model assumes that, after the change of a signal in the input of a gate, the
output changes after a delay which is modeled using a parametric closed interval.

7

l0

x ≤ 1 ∧ y ≤ 1

l1

x ≤ p′ ∧ y ≤ p

l2

x ≤ p ∧ y ≤ 2
y := 0 x ≤ p′′ ∧ y ≤ p

(a) CUB for some valuations

l0

x ≤ p
l1

x < p

x ≤ 1

(b) CUB for no valuations

Fig. 1: Examples of PTAs to illustrate the CUB concept

Algorithm 1: CUBdetect(A)

Input: PTA A = (Σ,L, l0, X, P,K0, I, E)
Output: A constraint K ensuring the PTA is a CUB-PTA

1 K ← K0

2 foreach edge (l, g, a,R, l′) do
3 foreach clock x ∈ X do
4 K ← K ∧

(
pub(I(l), x) ≤ pub(g, x)

)
5 if x /∈ R then K ← K ∧

(
pub(I(l), x) ≤ pub(I(l′), x)

)
6 return K

4.3 CUB PTA detection

Given an arbitrary PTA, our approach works as follows. Firstly, we check whether
it is a CUB-PTA for some valuations. If it is, we proceed to the synthesis prob-
lem, using the cycle detection synthesis algorithm (Section 5); however, the result
may be partial, as it will only be valid for the valuations for which the PTA is
CUB. This incompleteness may come at the benefit of a more efficient synthe-
sis. If it is CUB for no valuation, it has to be transformed into an equivalent
CUB-PTA (which will be considered in Section 4.4).

Our procedure to detect whether a PTA is CUB for some valuations is given
in Algorithm 1. For each edge in the PTA, we enforce the CUB condition on each
clock by constraining the upper bound in the invariant of the source location
to be smaller than or equal to the upper bound of the edge guard (line 4).
Additionally, if the clock is not reset along this edge, then the upper bound of
the source location invariant should be smaller than or equal to that of the target
location (line 5). If the resulting set of constraints accepts parameter valuations
(i. e. is not empty), then the PTA is a CUB-PTA for these valuations.

Example 2. Consider again the PTA A in Fig. 1a, assuming that A.K0 = >.
This PTA is CUB for 1 ≤ p ∧ 1 ≤ p′ ∧ p′ ≤ p′′.

Consider the PTA A in Fig. 1b, with A.K0 = >. When handling location l0
and clock x, line 4 yields A.K = > ∧ [(p,≤) ≤ (1,≤)] = p ≤ 1 and then, from
line 5, A.K = p ≤ 1 ∧ [(p,≤) ≤ (p,<)] = p ≤ 1 ∧ p < p = ⊥. Hence, there is no
valuation for which this PTA is CUB. ut

Proposition 1. Let K = CUBdetect(A). Then A(K) is a CUB-PTA.

8

Proof. From the fact that Algorithm 1 gathers constraints to match Definition 4.
�

4.4 Transforming a PTA into a disjunctive CUB-PTA

In this section, we show that an arbitrary PTA can be transformed into an
extension of CUB-PTAs (namely disjunctive CUB-PTA), while preserving the
symbolic runs.

For non-parametric TAs, it is shown in [27] that any TA can be transformed
into an equivalent CUB-TA. This does not lift to CUB-PTAs.

Example 3. No equivalent CUB-PTA exists for the PTA in Fig. 2b where K0 =
>. Indeed, the edge from l1 to l2 (resp. l3) requires p1 ≤ p2 (resp. p1 > p2). It is
impossible to transform this PTA into a PTA where K0 (which is >) is included
in both p1 ≤ p2 and p1 > p2. ut

Therefore, in order to overcome this limitation, we propose an alternative
definition of disjunctive CUB-PTAs. They can be seen as a union (as defined in
the timed automata patterns of, e. g. [13]) of CUB-PTAs.

Definition 5. A disjunctive CUB-PTA is a list of CUB-PTAs.
Given a disjunctive CUB-PTA A1, . . . ,An, with Ai = (Σi, Li, l

i
0, Xi, Pi,K

i
0, Ii, Ei),

the PTA associated with this disjunctive PTA is
A = (

⋃
iΣi,

⋃
i Li∪{l0}, l0,

⋃
iXi,

⋃
i Pi,

⋃
iK

i
0,
⋃

i Ii, E), where E =
⋃

iEi∪
E′ with E′ =

⋃
i(l0,K

i
0, ε,X, l

i
0).

Basically, the PTA associated with a disjunctive CUB-PTA is just an addi-
tional initial location that connects to each of the CUB-PTAs initial locations,
with its initial constraint on the guard.5

Example 4. In Fig. 2d (without the dotted, blue elements), two CUB-PTAs are
depicted, one (say A1) on the left with locations superscripted by 1, and one (say
A2) on the right superscripted with 2. Assume A1.K0 is p1 ≤ p2 and A2.K0 is
p1 > p2. Then the full Fig. 2d (including dotted elements) is the PTA associated
with the disjunctive CUB-PTA made of A1 and A2. ut

The key idea behind the transformation from a TA into a CUB-TA in [27]
is as follows: whenever a location l is followed by an edge e and a location l′ for
which ub(g, x) < ub(l, x) or ub(l′, x) < ub(l, x) for some x if x /∈ R, otherwise
ub(g, x) < ub(l, x), location l is split into two locations: one (say l1) with a
“decreased upper bound”, i. e. xCub(l′, x), that is then connected to l′; and one
(say l2) with the same invariant as in l, and with no transition to l′. Therefore,
the original behavior is maintained. Note that this transformation induces some
non-determinism (one must non-deterministically choose whether one enters l1
or l2, which will impact the future ability to enter l′) but this has no impact on
the existence of a non-Zeno cycle.

5 A purely parametric constraint (e. g. p1 > p2∧p3 = 3) is generally not allowed by the
PTA syntax, but can be simulated using appropriate clocks (e. g. p1 > x > p2∧p3 =
x′ = 3). Such parametric constraints are allowed in the input syntax of IMITATOR.

9

l1
x ≤ p1

x ≤ p2

(a) Example 1

l1

l2 l3x ≤ p1
x ≤ p2
x := 0

x ≤ p1

p1 ≤ x ≤ p2 p1 > x > p2

(b) Example 2

l0
x ≤ p

x ≤ p
x := 0

(c) Example 3

l0

l21

x ≤ p1

l11
x ≤ p1

l21
′

x ≤ p1
∧x ≤ p2

x ≤ p2 x ≤ p2

p1 ≤ p2 p1 > p2

p1 > p2

x ≤ p2

(d) Transformed version of Fig. 2a

l0

l21x ≤ p1

l23x ≤ p1

l11
x ≤ p2

l12l12
′

x ≤ p2

p1 > p2
p1 ≤ p2

x ≥ p1
∧x ≤ p2

x ≥ p1
∧x ≤ p2 x ≤ p2

∧x := 0x ≤ p2
∧x := 0

p1 > x > p2

x ≤ p1

(e) Transformed version of Fig. 2b

Fig. 2: Examples: detection of and transformation into CUB-PTAs

Here, we extend this principle to CUB-PTAs. A major difference is that,
in the parametric setting, comparing two clock upper bounds does not give a
Boolean answer but a parametric answer. For example, in a TA, (2,≤) ≤ (3, <)
holds (this is true), whereas in a PTA (p1,≤) ≤ (p2, <) denotes the constraint
p1 < p2. Therefore, the principle of our transformation is that, whenever we
have to compare two parametric clock upper bounds, we consider both cases:
here either p1 < p2 (in which case the first location does not need to be split) or
p1 ≥ p2 (in which case the first location shall be split). This yields a finite list of
CUB-PTAs: each of these CUB-PTAs consists in one particular ordering of all
parametric linear terms used as upper bounds in guards and invariants. (In prac-
tice, in order to reduce the complexity, we only define an order on the parametric
linear terms the comparison of which is needed during the transformation.)

Example 5. Let us transform the PTA in Fig. 2a: if p1 ≤ p2 then the PTA is
already CUB, and l1 does not need to be split. This yields a first CUB-PTA,
depicted on the left-hand side of Fig. 2d. However, if p1 > p2, then l1 needs to
be split into l21

′
(where time cannot go beyond p2) and into l21 (where time can

go beyond p2, until p1), but the self-loop cannot be taken anymore (otherwise
the associated guard makes the PTA not CUB). This yields a second CUB-PTA,
depicted on the right-hand side of Fig. 2d. Both make a disjunctive CUB-PTA
equivalent to Fig. 2a.

Similarly, we give the transformation of Fig. 2b in Fig. 2e. ut

10

5 Zeno-free cycle synthesis in CUB-PTAs

Taking a disjunctive CUB-PTA as input, we show in this section that synthesiz-
ing the parameter valuations for which there exists at least one non-Zeno cycle
(and therefore an infinite non-Zeno run) reduces to an SCC (strongly connected
component) synthesis problem.

First, we define a light extension of the parametric zone graph as follows. The
extended parametric zone graph of a PTA A is identical to its parametric zone
graph, except that any transition (s, e, s′) is replaced with (s, (e, b), s′), where b
is a Boolean flag which is true if time can potentially elapse between s and s′.
In practice, b can be computed as follows, given s = (l, C) and edge e:

1. add a fresh extra clock x0 to the constraint C, i. e. compute C ∧ x0 = 0
2. compute the successor s′ = (l′, C ′) of (l, C ∧ x0 = 0) via edge e
3. check whether C ′ ⇒ x0 = 0: if so, then b = false; otherwise b = true.

Introducing such a clock is cheap: the check is not expensive, and the extra clock
does not impact the size of the parametric zone graph: x0 is 0 in all nodes of
the zone graph and can be eliminated from the memory, therefore not requiring
more space nor extra states.

In contrast to non-parametric TAs, the flag b does not necessarily mean that
time can necessarily elapse for all parameter valuations. Consider the example
in Fig. 2c. After taking one loop, we have that x0 ≤ p: therefore, x0 is not
necessarily 0, and b is true. But consider v such that v(p) = 0: then in l1 time
can never elapse. However, we show in the following lemma that the flag b does
denote time elapsing for strictly positive parameters.

Lemma 3. Let (l, C)
e,b⇒ (l′, C ′) be a transition of the extended parametric zone

graph of a PTA A. Then, for any strictly positive parameter valuation in C ′↓P ,
there exists an equivalent transition in v(A) in which time can elapse.

Proof. First note that, for any v |= C ′↓P , an equivalent concrete transition exists
in v(A), from Lemma 1. Now, since b is true, the extra clock x0 in the state of the
extended parametric zone graph corresponding to (l, C ′) is either unbounded,
or bounded by some parametric linear term plt . If it is unbounded, then time
can elapse for any valuation, and the lemma holds trivially. Assume x0 ≤ plt for
some plt . As our parameters are strictly positive, then for any valuation v, v(plt)
evaluates to a strictly positive rational, and therefore time can elapse along this
transition in v(A). �

Definition 6. An infinite symbolic run r is non-Zeno if all its associated con-
crete runs are non-Zeno.

In the remainder of this section, given an edge e = (l, g, a,R, l′), e.R denotes
that the clocks in R reset along e.

The following theorem states that an infinite symbolic run is non-Zeno iff the
time can (potentially) elapse along infinitely many edges and, whenever a clock
is bounded from above, then eventually either this clock is reset or it becomes
unbounded.

11

Theorem 2. Let r = s0
(e0,b0)⇒ s1

(e1,b1)⇒ · · · be an infinite symbolic run of the
extended parametric zone graph of a CUB-PTA A. r is non-Zeno if and only if

∗ there exist infinitely many k such that bk = true; and
? for all x ∈ X, for all i ≥ 0, given si = (li, Ci), if pub(li, x) 6=∞, there exists
j such that j ≥ i and x ∈ ej .R or pub(lj , x) =∞.

We now show that synthesizing parameter valuations for which there exists
a non-Zeno infinite run reduces to an SCC searching problem.

First, given an SCC scc, we denote by scc.K the parameter constraint asso-
ciated with scc, i. e. C↓P , where (l, C) is any state of the SCC.6

Theorem 3. Let A be a CUB-PTA of finite extended parametric zone graph G.
Let v be a strictly positive parameter valuation. v(A) contains a non-Zeno infinite
run if and only if G contains a reachable SCC scc such that v |= scc.K and

† scc contains a transition s
(e,b)⇒ s′ such that b = true; and

‡ for every clock x in X, given s = (l, C), if pub(l, x) 6= ∞ for some state s
in scc, there exists a transition in scc with label (e, b) such that x ∈ e.R.

Therefore, from Theorem 3, synthesizing valuations yielding an infinite sym-
bolic run reduces to an SCC searching problem in the extended parametric
zone graph. Then, we need to test each SCC against two conditions: whether
it contains a transition which can be locally delayed (i. e. whether it contains
a transition where b = true); and whether every clock having an upper bound
other than ∞ at some state is reset along some transition in the SCC. Then,
for all SCCs matching these two conditions, we return the associated parameter
constraint.

We give in Algorithm 2 an algorithm synthNZ to solve the non-Zeno synthe-
sis problem for CUB-PTAs. synthNZ simply iterates on the SCCs, and gathers
their associated parameter constraints whenever they satisfy the conditions in
Theorem 3.

Algorithm 2: CUB-PTA non-Zeno synthesis algorithm synthNZ(A)

Input: CUB-PTA A and its extended parametric zone graph G
Output: constraint KNZ for which there is a non-Zeno infinite run

1 KNZ ← ⊥ while there are un-visited states in G do
2 find a new SCC scc;
3 mark all states in scc as visited;
4 if scc satisfies † and ‡ then
5 KNZ ← KNZ ∨ scc.K ;

6 return KNZ ;

6 Following a well-known result for PTAs, all symbolic states belonging to a same
cycle in a parametric zone graph have the same parameter constraint.

12

If G is finite, then the correctness and completeness of synthNZ immediately
follow from Theorem 3. If only an incomplete part of G is computed (e. g. by
bounding the exploration depth, or the number of explored states, or the execu-
tion time) then only the⇐ direction of Theorem 3 holds: in that case, the result
of synthNZ is correct but non-complete, i. e. it is a valid under-approximation. In
the context of parametric model checking, knowing which parameter valuations
violate the property is already very helpful to the designer, as it helps to discard
unsafe valuations, and to refine the model.

6 Experiments

We implemented our algorithms in IMITATOR [5].7 The Parma Polyhedra Li-
brary (PPL) [10] is integrated inside the core of IMITATOR in order to solve
mainly linear inequality system problems. Experiments were run on an Intel
Core 2 Duo P8600 at 2.4 GHz and 4 GiB of memory.

We compare three approaches: 1) A cycle detection synthesis without the
non-Zenoness assumption (called synthCycle). The result may be an over-approxi-
mation of the actual result, as some of the parameters synthesized may yield only
Zeno cycles. If synthCycle does not terminate, its result is an under-approximation
of an over-approximation, therefore considered as potentially invalid; that is,
there is no guarantee of correctness for the synthesized constraint. 2) Our CUB-
detection (Algorithm 1) followed by synthesis (Algorithm 2): the result may
be under-approximated, as only the valuations for which the PTA is CUB are
considered. 3) Our CUB-transformation (CUBtrans) followed by synthesis (Al-
gorithm 2) on the resulting disjunctive CUB-PTA. If the algorithm terminates,
then the result is exact, otherwise it may be under-approximated.

We consider various benchmarks: protocols (CSMA/CD, Fischer [2], RCP,
WFAS), hardware circuits (And-Or, flip-flop), scheduling problems (Sched5), a
networked automation system (simop) and various academic benchmarks.

We give from left to right in ?? the case study name and its number of
clocks, parameters and locations. For synthCycle, we give the computation time
(TO denotes a time-out at 3600 s), the constraint type (⊥, > or another con-
straint) and the validity of the result: if synthCycle terminates, the result is
an over-approximation, otherwise it is potentially invalid. For CUBdetect (resp.
CUBtrans) we give the detection (resp. transformation) time, the total time (in-
cluding synthNZ), the result, and whether it is an under-approximation or an
exact result. We also mention whether CUBdetect outputs that all, none or some
valuations make the PTA CUB; and we give the number of locations in the
transformed disjunctive CUB-PTA output by CUBtrans. The percentage is used
to compare the number of valuations (comparison obtained by discretization)
output by the algorithms, with CUBtrans as the basis (as the result is exact).

The toy benchmark CUBPTA1 is a good illustration: CUBtrans terminates
after 0.073 s (and therefore its result is exact) with some constraint. CUBdetect

7 For experimental data including source and binary, see imitator.fr/static/NFM17

13

imitator.fr/static/NFM17

is faster (0.015 s) but infers that only some valuations are CUB and analyzes
only these valuations; the synthesized result is only 69 % of the expected result.
In contrast, synthCycle is much faster (0.006 s) but obtains too many valuations
(208 % of the expected result) as it infers many Zeno valuations.

Let us discuss the results. First, synthCycle almost always outputs a possi-
bly invalid result (neither an under- nor an over-approximation), which justi-
fies the need for techniques handling non-Zeno assumptions. In only one case
(CUBPTA1), it outputs a non-trivial over-approximation. In two cases, it hap-
pens to give an exact answer, as the over-approximation of ⊥ necessarily means
that ⊥ is the exact result. In contrast, CUBtrans gives an exact result in five
cases, a non-trivial under-approximation in two cases; the five remaining cases
are a disappointing result in which ⊥ is output as an under-approximation. By
studying the model manually, we realized that some non-Zeno cycles actually
exist for some valuations, but our synthesis algorithm was not able to derive
them. Only in one of these cases (Sched5), synthCycle outputs a more interesting
result than CUBtrans.

The transformation is relatively reasonable both in terms of added locations
(in the worst case, there are 40 instead of 10 locations, hence four times more, for
WFAS) and in terms of transformation time (the worst case is 1.2 s for Sched5).
Our experiments do not allow us to fairly compare the time of synthCycle (with-
out non-Zenoness) and synthNZ (with non-Zenoness assumption) as, without
surprise due to the undecidability, most analyses do not terminate. Only two
benchmarks terminate for both algorithms, but are not significant (< 1 s).

Note that flip-flop is a hardware circuit modeled using a bi-bounded inertial
delay, and is therefore CUB for all valuations.

An interesting benchmark is WFAS, for which our transformation procedure
terminates whereas synthCycle does not. Therefore, we get an exact result while
the traditional procedure cannot produce any valuable output.

As a conclusion, CUBdetect seems to be faster but less complete than CUBtrans.
As for CUBtrans, its result is almost always more valuable than synthCycle, and
therefore is the most interesting algorithm.

7 Conclusion

We proposed a technique to synthesize valuations for which there exists a non-
Zeno infinite run in a PTA. By adding accepting states, this allows for parametric
model checking with non-Zenoness assumption. Our techniques rely on a trans-
formation to a disjunctive CUB-PTA (or in some cases on a simple detection
of the valuation for which the PTA is already CUB), and then on a dedicated
cycle synthesis algorithm. We implemented our techniques in IMITATOR and
compared our algorithms on a set of benchmarks.

Future works Our technique relying on CUB-PTAs extends the technique of
CUB-TAs: this technique is shown in [27] to be the most efficient for performing
non-Zeno model checking for TAs. However, for PTAs, other techniques (such

14

as yet to be defined parametric extensions of strongly non-Zeno TAs [26] or
guessing zone graph [16]) could turn more efficient and should be investigated.

In addition, parametric stateful timed CSP (PSTCSP) [7] is a formalism for
which the CUB assumption seems to be natively verified. Therefore, studying
non-Zeno parametric model checking for PSTCSP, as well as transforming PTAs
into PSTCSP models, would be an interesting direction of research.

Studying the decidability of the underlying decision problem should be done
for famous subclasses of PTAs constraining the use of parameters (namely L/U-
PTAs, L-PTAs and U-PTAs [17]) as well as for new semantic subclasses that
we recently proposed and that benefit from decidability results (namely integer-
point PTAs and reset-PTAs [6]).

An interesting future will be to design a multi-core extension of our non-Zeno
synthesis algorithm; this could be done by reusing parallel depth first search
algorithms for finding cycles [14].

Finally, combining our synthesis algorithms with IC3 [12], as well as extend-
ing them to hybrid systems [23] is also of high practical interest.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC.
pp. 592–601. ACM (1993)

3. André, É.: What’s decidable about parametric timed automata? In: FTSCS. pp.
52–68. CCIS, Springer (2015)

4. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. IJFCS 20(5), 819–836 (2009)

5. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: A tool for analyzing
robustness in scheduling problems. In: FM. LNCS, vol. 7436, pp. 33–36 (2012)

6. André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed au-
tomata. In: ICFEM. LNCS, vol. 10009, pp. 400–416. Springer (2016)

7. André, É., Liu, Y., Sun, J., Dong, J.S.: Parameter synthesis for hierarchical con-
current real-time systems. Real-Time Systems 50(5-6), 620–679 (2014)

8. André, É., Markey, N.: Language preservation problems in parametric timed au-
tomata. In: FORMATS. LNCS, vol. 9268, pp. 27–43. Springer (2015)

9. Aştefănoaei, L., Bensalem, S., Bozga, M., Cheng, C., Ruess, H.: Compositional
parameter synthesis. LNCS, vol. 9995, pp. 60–68 (2016)

10. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1–2), 3–21 (2008)

11. Bowman, H., Gómez, R.: How to stop time stopping. Formal Aspects of Computing
18(4), 459–493 (2006)

12. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In:
FMCAD. pp. 165–168. IEEE (2013)

13. Dong, J.S., Hao, P., Qin, S., Sun, J., Yi, W.: Timed automata patterns. IEEE
Transactions on Software Engineering 34(6), 844–859 (2008)

14. Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved multi-core
nested depth-first search. In: ATVA. LNCS, vol. 7561, pp. 269–283. Springer (2012)

15

15. Gómez, R., Bowman, H.: Efficient detection of Zeno runs in timed automata. In:
FORMATS. LNCS, vol. 4763, pp. 195–210. Springer (2007)

16. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Efficient emptiness check for timed
Büchi automata. Formal Methods in System Design 40(2), 122–146 (2012)

17. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. JLAP 52-53, 183–220 (2002)

18. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed au-
tomata. Transactions on Software Engineering 41(5), 445–461 (2015)

19. Khatib, L., Muscettola, N., Havelund, K.: Mapping temporal planning constraints
into timed automata. In: TIME. pp. 21–27. IEEE Computer Society (2001)

20. Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata.
Transactions on Petri Nets and Other Models of Concurrency 5, 141–159 (2012)

21. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2) (1997)
22. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc. (1967)
23. Schupp, S., Ábrahám, E., Chen, X., Makhlouf, I.B., Frehse, G., Sankaranarayanan,

S., Kowalewski, S.: Current challenges in the verification of hybrid systems. In:
CyPhy. LNCS, vol. 9361, pp. 8–24. Springer (2015)

24. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under
fairness. In: CAV. LNCS, vol. 5643, pp. 709–714. Springer (2009)

25. Tripakis, S.: Verifying progress in timed systems. In: AMAST. pp. 299–314 (1999)
26. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed Büchi automata emptiness

efficiently. Formal Methods in System Design 26(3), 267–292 (2005)
27. Wang, T., Sun, J., Wang, X., Liu, Y., Si, Y., Dong, J.S., Yang, X., Li, X.: A sys-

tematic study on explicit-state non-Zenoness checking for timed automata. IEEE
Transactions on Software Engineering 41(1), 3–18 (2015)

16

	Parametric model checking timed automata under non-Zenoness assumption

